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Stochastic Resonance in Chaotic Systems 

V. S. Anishchenko, 1 A. B. Ne iman,  1 and M. A. Safanova 1 

The phenomenon of stochastic resonance (SR) is investigated for chaotic 
systems perturbed by white noise and a harmonic force. The bistable discrete 
map and the Lorenz system are considered as models. It is shown that SR in 
chaotic systems can be realized via both parameter variation (in the absence of 
noise) and by variation of the noise intensity with fixed values of the other 
parameters. 
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1. I N T R O D U C T I O N  

Dynamical  chaos has the remarkable property that allows one to investigate 
experimentally regimes of oscillation which are unstable in the Lyapunov 
sense. Moreover, real chaotic systems are, in principle, structurally 
unstable. (1) These properties of chaos dynamics do not correspond to the 
basic principles of classical oscillation theory, which are based on assump- 
tions of structural stability and the stability of all realizable solutions. 

Strictly speaking, strange attractors can be realized only in structurally 
stable, hyperbolic systems. Until now, however, in practice nobody could 
find such systems. Attractors of the Lorenz type are more similar to real 
strange attractors, since they satisfy the condition of hyperbolicity, but are 
not structurally stable3 2) Usually, regimes of dynamical chaos are observed 
in structurally unstable, quasihyperbolic systems (that is, systems with 
quasiattractors). The simultaneous coexistence of a number  of regular and 
chaotic attractors is typical for quasiattractors. These attractors undergo 
an infinite number  of different bifurcations as the system parameters are 
varied. As a result of these properties, systems with quasiattractors are 
extremely sensitive to external perturbations. (3 7) An external perturbation 
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of such a system can generate a set of interesting effects due to the inter- 
actions of the attractors, including noise-induced phase transitions. (8-11) 
One of these effects is stochatic resonance (SR). (12 14) 

The mechanism of SR has been investigated in detail for simple bistable 
systems with two stable and one unstable equilibrium points. (5'15-2~) Noise 
forcing in these systems induces random switching between the two stable 
states, with a mean frequency which depends on the noise intensity and the 
height of the potential barrier. (22) The classical phenomenon of SR can be 
realized in such a bistable system driven simultaneously by noise and a 
weak harmonic signal. SR manifests itself as a maximum in the signal-to- 
noise ratio (SNR) for a specific noise intensity D, at which the coherence 
between modulation and switching frequencies takes place. 

The problem of the interaction of two chaotic attractors induced by 
external noise and by the variation of control parameters can be considered. 
This interaction is also characterized by a certain switching frequency that 
depends on the noise intensity and parameter values. Resonance pheno- 
mena are generated under additional modulation and SR can be observed. 

In this paper, we consider two examples of quasihyperbolic systems 
which demonstrate SR as a result of the interaction of chaotic attractors. 

2. SR IN O N E - D I M E N S I O N A L  CUBIC M A P  

Consider the discrete system (23) 

X n +  1 = ( a  - -  1) x n - -  aX3n (1) 

For  0 < a < 2 the map (1) has only one stable fixed point at the origin 
(xl = 0). A pitchfork bifurcation takes place at a = 2. There are two stable 
fixed points, x2,3 = _+c, c = [ ( a - 2 ) / a ]  ~/2, and one unstable fixed point at 
the origin for 2 < a < 3. The cascade of period-doubling bifurcations is 
realized in the interval of 3 ~<a < 3.3 and the map (1) demonstrates chaos 
for a ~> 3.3. 

If 3.3 < a ~< 3.6, there are two disjoint symmetric Feigenbaum-type 
attractors, whose basins of attraction are separated by the separatrix 
x l = 0 .  A stationary probability density for this case is represented in 
Fig. la and consists of two noncrossing functions. At a ~ - a  * =  3.598..., (23) 
the attractors merge into one chaotic set, and a new chaotic attractor with 
the probability density shown in Fig. lb exists for a > a*. The bifurcation 
of attractor merging is followed by a phenomenon of intermittency of the 
"chaos-chaos" type. (23'24) The phase trajectory resides in the basins of 
partial attractors for a long time and makes random transitions from one 
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Fig. 1. Probability density distributions p(x) for attractors of the dynamical system (1) at 
different values of the parameter a. 

region to the other. The mean residence time ~1 in each of the attractors 
(duration of "laminar" phase) satisfies the universal critical relation 

"c1~ ( a - -  a * )  -7  , ~ = 0 . 5  (2) 

At the moment of attractor merging, the power spectrum has the shape 
typical for 1 I f  ~ noise. (25'26) The effect of intermittency of the "chaos-chaos" 
type can be obtained as a result of additive noise perturbation. With this, 
the character of dependence (2) is maintained, and the critical index 7 
becomes a function of noise intensity, y = 7(D). 

Let us add to map (1) periodic modulation and noise: 

x, ,  +1 = (a  - 1 ) x , ,  - ax3~ + e sin(2rcfo n) + ~(n) (3) 

where e and fo are the amplitude and frequency of the modulation, respec- 
tively, and (~ (n ) )  = 0, (~(n) ~(n + k ) )  = 2D&(k). Let us investigate the 
dynamics of system (3) on the "two-state" level by replacing the coordinate 
x ( n )  with + 1 if x ( n )  > 0 and - 1 if x ( n )  < O. 

Under the assumption that 2 = x n +  l - x  n, we can transform the 
discrete model (1) into the differential equaton 2 = ( a - 2 ) x - a x  3 and 
calculate the potential U(x): 

a - 2 X 4 
U ( x )  = - - -  x 2 + a - -  (4) 

2 4 
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This allows one to define a Kramers rate 

a-_~2 [ (a-2)2~4aD r o = exp (5) 
,,/2 ] 

and to derive an expression for the SNR within the adiabatic approxima- 
tion: 

S N R -  ( a - -  2)  2 g2 [ ( a ~ 2 ) 2 1  
aD 2 exp 4aD J (6) 

Consider the dynamics of (3) when the two symmetrical chaotic 
attractors coexist at a = 3.4. Noise addition (provided that e = 0) makes the 
probability density p(x) smoother and induces a switching among the 
attractors. 

o.oso p D= 0 ,004 a 

o.ooo I _-/ I_ J_ l_ ",I x 
-1 .0  -015 0.0 0.5 1.0 

S, dB o D= O. 004 t5 

- 1 0  
-20 
-30 

0.05 0.10 0.15 

P D: O, 004 c 0.050 

o.ooo ~b 2b ~b ~b ~ 

fs 
o.o8 d 

0.00  
( 0 

Fig. 2. Characteristics of system (3) at a =  3.4, e = 0 :  (a) probability density distribution 
p(x), (b) power spectrum S(f ) ,  (c) probability density distribution of residence time p(n), and 
(d) plot of mean switching frequency f ,  versus noise intensity D. 
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The main quantitative characteristics of the dynamics (3) without 
modulation (e = 0) are represented in Fig. 2 and reflect typical properties of 
bistable systems in the presence of noise. 

The periodic stimulation e = 0.05, fo = 0.125 results in a sharp peak in 
the power spectrum at the frequency fo (Fig. 3a). The probability distribu- 
tion of the residence time p(n) has the specific shape of a sequence of strong 
Gaussian-like peaks of exponentially decreasing amplitude (Fig. 3b). The 
peaks are centered at odd integer multiples of the modulation half-period. 
The plot of SNR(D) (Fig. 3c) is also typical for systems demonstrating SR. 
Maximum signal-to-noise ratio corresponds to the noise intensity D = Do, 
with the mean transition frequency f ,  near fo/3 (compare Fig. 2d and 
Fig. 3c). Though conditions of the adiabatic approximation are not fulfilled 
here, the dependence SNR(D) is in good agreement with the theoretical 
predictions. (15) The solid curve in Fig. 3c corresponds to the approximation 
of SNR(D) via the expression 

where D o = 0.0036, g = 0.003865, and w = 0.013428. 
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Fig. 3. (a) Power spectrum S(f) and (b) probability density distribution of residence time 
p(n) in the system (3) for s = 0.05, fo =0.125, a = 3.4. (c)Signal-to-noise ratio (SNR) versus 
noise intensity D: crosses, results of numerical calculation; solid curve, approximation by 
expression (7). 
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Mean switching frequency in the system (3) at D = 0  and ( a ) e = 0  and (b)e=0.01  
versus parameter a. 

Note that computation on the level of a complete dynamics of the map 
(3) has not shown any resonance effects in the SNR(D) dependence. 

SR in system (3) in the absence of noise (D = 0). As is seen from 
Fig. lb, chaotic attractors merge to one attractor at a>~a*, and the 
switching effect is achieved due to the intrinsic deterministic dynamics of 
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Fig. 5. Probability density distribution p(x), power spectrum S(f), and probability distribu- 
tion of residence time p(n) for the attractors of (3) at D =0,  a = 3.6 without modulation (on 
the left) and with modulation e =0.01, f0=0.125 (on the right). 
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the system. The chaotic structure of the attractor causes the transitions, 
which are realized randomly in time with the frequency f~ determined by 
the value of the parameter a, as shown in Fig. 4. 

By analogy with classic SR phenomena, we can suggest that a 
coherent interaction of transition and modulation frequencies occurs when 
the dependence SNR(a) demonstrates the maximum without noise forcing. 
Figure 5 shows computational results for p(x), S(f), and p(n) at e = 0 (on 
the left) and for modulation with amplitude e=0.01 (on the right) for 
system (3) at a =  3.6, D = 0 .  In the absence of modulation (e=0) ,  the 
probabiliy distribution p(n) is similar to a uniform one. With modulation 
E=0.01 and fo=0.125  the shape of the probability distribution p(n) 
becomes typical for SR. Calculation of the dependence SNR(a) confirms 
this proposition. The curves SNR(a) are shown in Fig. 6. They were 
calculated both on the level of "two-state" dynamics (Fig. 6a) and for the 
complete dynamics (Fig. 6b). SR is observed in both cases here, unlike the 
results for a = 3.4. Moreover, there are three maxima on the curve SNR(a) 
at three values of the parameter a (see Fig. 6), corresponding to resonances 
fs : f0  = 1:3, 1:1, and 4:3. Note that the total power of the process x(n) is 
almost constant here. 
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Fig. 6. Calculation of SNR(a) (a)on the level of "two-state" dynamics and (b)for a 
complete dynamics in system (3) at e = 0.01, fo = 0.125, D = 0. (c) Lyapunov exponent l versus 
parameter a at ~ = 0.0. 
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3. SR IN T H E  L O R E N Z  M O D E L  

The Lorenz model is quite suitable for investigations of the influence 
of noise on the dynamics of chaotic systems. This model allows a correct 
introduction of Langevin sources into the dynamical equations. (27~ For the 
Lorenz model with noise, an ergodicity has been proved. (28) Moreover, 
there are regions of the Lorenz attractor and of quasiattractors in the 
Lorenz model, i.e., a phase transition "Lorenz attractor-quasiattractor" 
can take place (see Fig. 7). (29) Consider the parameter values corresponding 
to quasihyperbolic attractors. Just here, effects of the interactions of attrac- 
tors with different structures can be observed. Particularly, effects of 
"chaos-chaos" intermittency induced by noise can be realized. (6) 

Let us investigate the noise-induced transition in the region of the 
existence of the quasiattractor for parameter values a = 10, r =  210, and 
b = 8/3. The stochastic differential equatons of the Lorenz system are 

d x / d t  = - ~ r x  + ~ry + r 

d z / d t  = - b z  + x y  + ~3(/), 

dy /d t  = - y  + rx  - x z  + ~2(t) 

( ~ i ( t )  ~j ( t  + r)  ) = (~ij O6(~)  
(8) 

Contours of constant two-dimensional stationary probability density 
p(x ,  y )  obtained by using numerical integration of system (8) are plotted in 
the absence of noise D = 0 in Figs. 8a and 8b and in the presence of noise 
with intensity D = 1.0 in Fig. 8c. In the absence of noise, two symmetric 
attractors are realized in the system for different initial conditions (Figs. 8a 
and 8b). When D ~ 0, the noise induces a merging of the two symmetrical 
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Fig. 7. Bifurcation diagram of the Lorenz system in the (r, a) plane at b = 8/3: ll, line of 
separatrix loop; 12, line of birth of Lorenz attractor; 13, boundary between regions of Lorenz 
attractor and quasiattractor. 
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attractors into one chaotic set. For weak noise intensities, the phase trajec- 
tory is retained on each of the attractors for a long time and makes quick 
transitions between them. So, "chaos-chaos" intermittency induced by 
external noise is realized in the system. To confirm the conclusion about 
the existence of intermittency, we have calculated the power spectrum S(co) 
of the process x(t). Figure 9a shows the power spectrum calculated in the 
absence of noise. Its low-frequency part is represented in Fig. 9b. In the 
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Fig. 8. Contours  of constant  two-dimensional  s tat ionary probabili ty density p(x,z): 
(a) D = 0 ,  x o=40.0,  y o = l - 0 ,  z o=300.0,  (b) D = 0 ,  x o = - 4 0 . 0 ,  y o = l . 0 ,  z o=300.0,  
(c) D = 1.0, xo = 40,0, Yo = 1.0, z o = 300.0. 

822/70/1-2-13 



1 9 2  A n i s h c h e n k o  e t  al. 

,5X(dB) 

-16,~ 

-33.6g 

.-49.5" 

Sx(clBl 

-2~ ,0. 

-34.5 

"415,0' 

'-W/,6, 

-~.~ 

-~.S 

~ . ~  

~ldB) 

"23.0 

-~4.1~ 

-46,0 

"-UT.g 

I I I I I I 
2 

t I I I 
4 6 9 19 12 14 t6 18 29 r 

0.2 6.4 0.6 (t,8 1,6 1.2 1,4 1.6 !.8 2.8 ,~ 

~'.2 e'.4 ~!~ e!8 ,:8 t!2 1~, 1J~ ,.~ 2Lo 

I I I I I i I I I i 
0,2 6,4 e,6 @.8 load 1.2 1,4 1,6 t .8  2,9 [d 

Fig. 9. Power spectrum Sx(oJ ) of system (8): (a )power  spectrum at D = 0 ,  ( b , c , d )  low- 
frequency domain of spectrum at D = 0,0, 0.2, and 0.5, respectively. 
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presence of additive noise, the power spectrum evolves to the low- 
frequency domain, which is verified by Fig. 9c (D = 0.2). The low-frequency 
component in the power spectrum is caused by the existence of two charac- 
teristic time scales. The first corresponds to a long residence of the phase 
trajectory on each of the symmetric attractors. The second corresponds to 
the transitions between them. The mean residence time T+. on each of the 
merged attractors is connected with the half-width of the low-frequency 
spectral component Aco by the obvious relation Ts = 2~z/Ac~. If the noise 
intensity increases, the mean residence time of the phase trajectory on each 
of the merged attractors decreases: Ts ~ exp( f l /D) .  This is demonstrated by 
a smoothing out of the low-frequency power spectrum domain (Fig. 9b). 
The variables ~ and fl in the expressions for Ts are constants. 

Thus, transitions induced by noise take place in the region of quasi- 
attractors of the Lorenz system. The interaction of attractors with "chaos-  
chaos" intermittency is realized here. Note that this effect is maintained for 
multiplicative noise as well as for the case when sources ~i(t) have a finite 
correlation time. (3~ 

Consider the simultaneous action of noise and an external harmonic 
force,+ included in the first equation of system (8): 

dx /d t  = -~rx  + ay  + e sin -Qot + s (9) 

The frequency of the external excitation g2 o = 27rfo = 0.1 was chosen in 
accordance with the mean residence time of the phase trajectories on each 
of the attractors. The existence of two characteristic time scales in the 
process enables us to suggest SR occurring under variation of the noise 
intensity D. The low-frequency domain of the power spectrum is shown in 
Fig. 10 for the system (9) with harmonic perturbation. The system (9) was 
integrated during a period Trnax -'~ 5 • 103, corresponding to 80 periods of 
harmonic excitation. The SNR(D) dependence demonstrating SR is shown 
in Fig. 11, 
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Fig. 10. Power spectrum of the system (8) with harmonic modulation D=0.2, e=2.0, 
~2o =0.1. 
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Plot of signal-to-noise ratio versus noise intensity D. 

The SR phenomenon was found in the Lorenz model at r >> 1 by using 
a direct numerical experiment and can be explained theoretically. To do 
this, we have transformed the Lorenz equations (8) at D = 0 into the form 
of a parametric inertial nonlinear oscillator in N3,(31,32) 

p+ (~h~+ y 3 + ( z -  1 ) y = O  
(10) 

= 5 ( / ~ y 2  _ ~ z )  

where ~ = (r - 1) -~ h = (1 + a)/~-~, ~ = b / ~ ,  and ]~ = (2(~ - b)/~-~. In 
our case, r = 2 1 0 ~  1, therefore 6 ~  1. So we can suppose ~ = 0 .  Let us 
eliminate the variable z from (10) and obtain the equations of a noninertial 
oscillator in R2: 

.9+kg+dy3-y=O, k=(~h,  d=(c(+fl)/~ (11) 

The system (11) describes a bistable dissipative oscillator investigated 
in detail by using the theory of SR. (17'33'34) 

4. C O N C L U S I O N S  

The results of numerical experiments presented in this paper yield the 
following conclusions. 

1. In systems with quasiattractors, interaction of different types of 
attractors are realized. This leads to an intermittency effect. If only two 
attractors interact, then the system can be treated as bistable in a more 
general sense. 



Stochastic Resonance in Chaotic Systems 195 

2. The interact ion of at tractors can be induced by both  external noise 

and a var ia t ion  of parameters  responsible for the mean  t ransi t ion frequency. 

3. The stochastic resonance can be realized in quasihyperbol ic  
systems via both  parameter  var ia t ion (in the absence of noise) and  varia- 

t ion of noise intensi ty under  fixed values of the parameters.  
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